

Exercise set (4.3): Exercise 4.3. P.221-222: 1-2(a-b)-4(b)-5-6(b)-7-15-20-21-27-29-33			
		Exercise set ((4.3):
1-2(a-b)-4(b)-5-6(b)-7-15-20-21-27-29-33	Exercise 4.3.	P.221-222:	
	1-2(a-b)-4(b)-	5-6(b)-7-15-20-21-27-29	-33

1–12 Evaluate the integrals using the indicated substitutions.

- **1.** (a) $\int 2x(x^2+1)^{23} dx$; $u=x^2+1$
 - (b) $\int \cos^3 x \sin x \, dx; \ u = \cos x$
- a) $U = \chi^2 + 1$

- du-Sinxdx
- u3 (-du) = _∫ u3 du

2. (a) $\int \frac{1}{\sqrt{x}} \sin \sqrt{x} \, dx; \ u = \sqrt{x}$

u=1x

 $du = \frac{1}{2\sqrt{x}}dx$

 $2du = \frac{1}{\sqrt{x}} dx$

JSinu (2du) = 2/sinu du

2 Cos(w) + C = 2 Cas(\(\overline{1}\times\) + C

(b)
$$\int \frac{3x \, dx}{\sqrt{4x^2 + 5}}; \ u = 4x^2 + 5$$

u=4x2+3

 $du=8\times dx => \frac{du}{8} = \times dx$

$$3/du = 3/du = 3/2/u + C =$$

$$\frac{6}{8}\sqrt{4x^2+5}+C=\frac{3}{4}\sqrt{4x^2+5}+C$$

$$=\frac{5}{9}(x^2+7x+3)^3+C$$

$$5. (a) \int \cot x \csc^2 x \, dx; \ u = \cot x$$

(b)
$$\int (1 + \sin t)^9 \cos t \, dt$$
; $u = 1 + \sin t$

b) u=1+ sint

$$\int u^2 du = \frac{u^0}{\sqrt{2}} + C$$

6. (b) $\int x \sec^2 x^2 dx$; $u = x^2$

W=X2

du=2xdx

 $\frac{du}{2} = x dx$

Jsecudu = 1 secudu

= 1 (tanu)+C

 $= \frac{1}{2} \tan x^2 + C$

7. (a)
$$\int x^2 \sqrt{1+x} \, dx$$
; $u = 1+x$
(b) $\int [\csc(\sin x)]^2 \cos x \, dx$; $u = \sin x$

$$\frac{(u_{-})^2 + \chi^2}{(u_{-})^2 + \chi^2}$$

$$\int (u_1)^2 \sqrt{u} du = \int (u^2 - 2u + 1) (u)^{1/2} du$$

$$\int \frac{2+1/2}{4} = \frac{1+\frac{1}{2}}{2} + \frac{1/2}{4} du$$

$$\int \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{1}{2} \frac{$$

$$=\frac{3/2+1}{5/2+1}-2\frac{3/2+1}{3/2+1}+\frac{1/2+1}{1/2+1}+C$$

$$= \frac{\frac{7}{2}}{\frac{7}{2}} - \frac{\frac{5}{2}}{\frac{5}{2}} + \frac{\frac{3}{2}}{\frac{3}{2}} + \frac{1}{2}$$

$$=\frac{2}{7}\sqrt{2}-2\left(\frac{2}{3}\right)\sqrt{2}+\frac{2}{3}\sqrt{2}+c$$

$$=\frac{2}{7}\sqrt{2}\frac{4}{5}\sqrt[3]{2}+\frac{2}{3}\sqrt[3]{2}+c$$

$$= \frac{2(1+x)^{2} + \frac{4(1+x)^{2}}{5} + \frac{2(1+x)^{2}}{3} + \frac{2(1+x)^{2}}{3} + \frac{2}{3}$$

b) W= Sinx	
du= Cosx dx	
$\int (CSC(u))^2 du$	
= Cotu, C	
=_ Cot(sinx) + (

15. $\int \sec 4x \tan 4x dx$	
_ 4×	
u 4 dv dv	
$u = 4 dx = \frac{du}{4} = dx$	
Sec(u) tan(u) du	
Sec(u) tan(u) du	
_ Sec(u) + C	
Sec(4x)+C	
1	

20.
$$\int \frac{x^2 + 1}{\sqrt{x^3 + 3x}} \, dx$$

$$u=X^3+3x$$

$$du = 3x + 3 dx$$

$$\frac{\int u}{3} = (\times^2 + 1)$$

$$\frac{1}{3}\int \frac{du}{\sqrt{u}} = \frac{1}{3}\int \frac{du}{u^{1/2}}$$

$$\frac{1}{3} \int \frac{u^2}{u^2} du = \frac{1}{3} \cdot \frac{u^2}{-12+1} + C$$

$$=\frac{1}{3}, \frac{1}{2}$$

$$=\frac{1}{3}$$
, $\frac{2}{4}$, $\frac{1}{2}$

$$=\frac{3}{5}\sqrt{x_3+3x}+C$$

$$21. \int \frac{x^3}{(5x^4+2)^3} \, dx$$

$$u = (3x^4 + 2)$$

$$\frac{du}{20} = x^3 dx$$

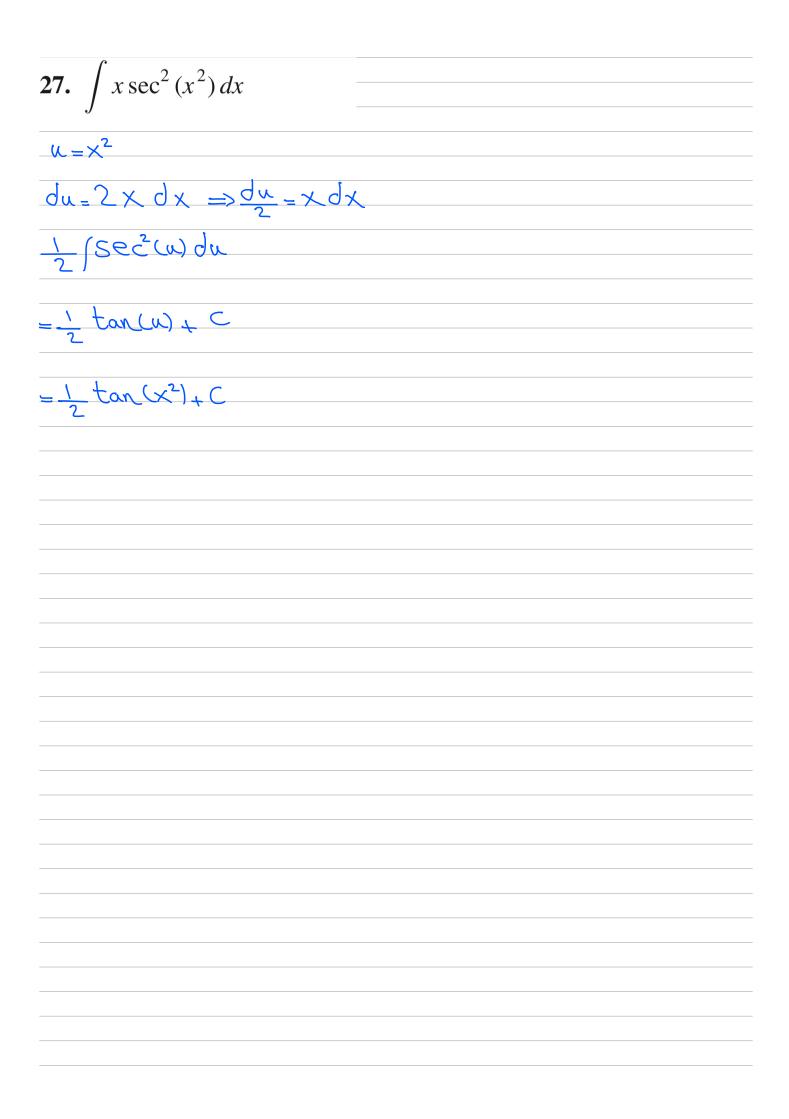
$$\int \frac{1}{u^3} \frac{du}{20}$$

$$\frac{1}{20} \int u^{-3} du = \frac{1}{20} \cdot \frac{-3+1}{4} + C$$

$$=\frac{1}{20} \cdot \frac{2}{-2}$$

$$=\frac{1}{40}\cdot\frac{1}{(5x^4+2)^2}+C$$

$$=-\frac{1}{40(5x^4+2)^2}+$$



$$29. \int \cos 4\theta \sqrt{2 - \sin 4\theta} \, d\theta$$

$$= \frac{1}{4} \int \frac{\sqrt{2}}{4} du = \frac{1}{4} \cdot \frac{\sqrt{2}}{2} + \frac{1}{2}$$

$$=\frac{3/2}{43/2}$$

$$= \frac{1}{6} (2 - \sin 4\theta) + C$$

$$33. \int \frac{y}{\sqrt{2y+1}} \, dy$$

$$du = 2dY \Rightarrow \frac{du}{2} = dY$$

$$u_{-1}=2\gamma \Longrightarrow \gamma = \frac{u_{-1}}{2}$$

$$\int \frac{u-1}{2\sqrt{u}} \cdot \frac{du}{2}$$

$$= \frac{1}{4} \int \frac{u-1}{\sqrt{u}} du$$

$$= \frac{1}{4} \left(\frac{\frac{1}{1}}{\frac{1}{1}} - \frac{\frac{1}{1}}{\frac{1}{1}} + \frac{1}{1} \right) + C$$

$$= \frac{1}{4} \left(\frac{1}{3/2} - \frac{1}{1/2} \right) + C$$

$$=\frac{2}{12}\frac{3/2}{4}-\frac{2}{4}\frac{1/2}{4}+C$$

$$=\frac{1}{6}\frac{3/2}{4}-\frac{1}{2}\frac{1/2}{4}+\frac{1}{2}$$

$$=\frac{1}{6}(2\gamma+1)^{3/2}-\frac{1}{2}(2\gamma+1)^{1/2}+C$$