

Exercise set 0.4:	
xercise set 0.4:	
, 3(a, b, c, d, f) 9, 10,11, 12, 13, 17,18, 19, 22 p.44-4	5.

1. In (a)–(d), determine whether f and g are inverse functions.

(a)
$$f(x) = 4x$$
, $g(x) = \frac{1}{4}x$

$$(f \circ g)(x) = f(g(x)) = f(\frac{1}{4}x) = 4(\frac{1}{4}x) = x$$

$$(9 \circ f)(X) = 9(f(X)) = 9(4X) = \frac{1}{4}(4X) = X$$

: fand 9 are inverse function

(b)
$$f(x) = 3x + 1$$
, $g(x) = 3x - 1$

$$(f \circ g)(X) = f(g(X)) = f(g(X))$$

$$= 3(3X^{-1})^{+} | = 3X^{-3} + |$$

$$= 9x_2$$

: fand 9 are not inverse function

(c)
$$f(x) = \sqrt[3]{x-2}$$
, $g(x) = x^3 + 2$

$$(f \circ g)(x) = f(g(x)) = f(x^3 + 2) = \sqrt[3]{x^3 + 2} = 2$$

$$=\sqrt[3]{X^3} = X$$

$$(g_{of})(x) = g(f(x)) = g(\sqrt[3]{x} - 2) = (\sqrt[3]{x} - 2)^{3} + 2$$

$$= X_{-2} + 2$$

: fand 9 are inverse function

(d)
$$f(x) = x^4$$
, $g(x) = \sqrt[4]{x}$

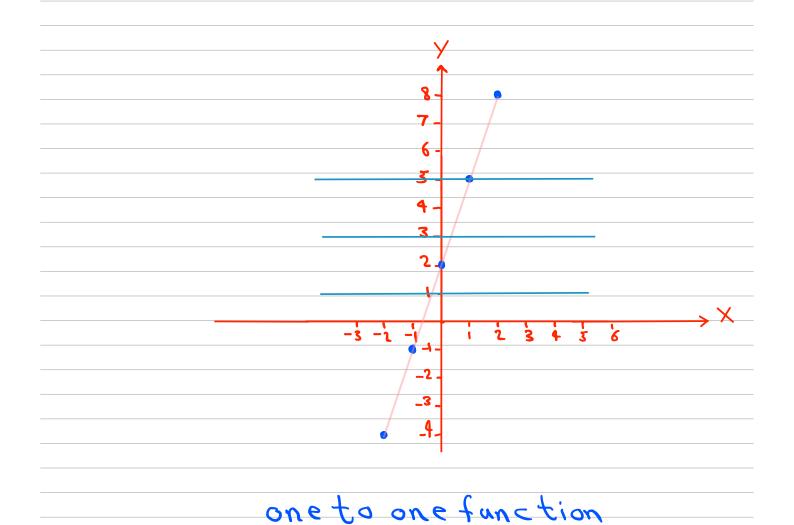
$$(f_0g)(x) = f(g(x)) = f(\sqrt[4]{x}) = (\sqrt[4]{x})^4 = x$$

$$(g_{of})(x) = g(f(x)) = g(x^{4}) = \sqrt[4]{x^{4}} = x$$

3. In each part, use the horizontal line test to determine whether the function f is one-to-one.

(a) f(x) = 3x + 2

X	Y=3X+2	(X,Y)
-2	3(-2)+2	
	=-4	(-2,-4)
-1	3(-1)+2	
	=-	(- ,-)
0	3(0)+2	
	= 2	(0,2)
1	3(1)+2	
	= 5	(1,5)
2	3(2)+2	
	= 8	(2,8)



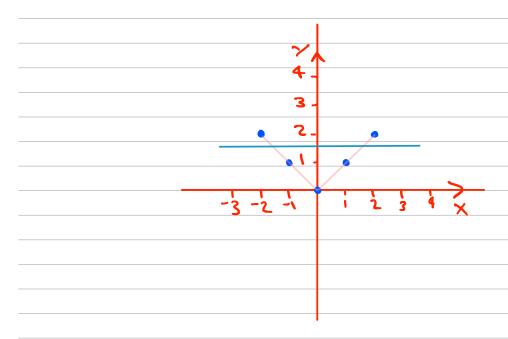
(b)
$$f(x) = \sqrt{x - 1}$$

X	(X,Y)	
√1-1=0	(1,0)	
$2\sqrt{2-1} = \sqrt{1} = 1$	(2,1)	
$3 \sqrt{3-1} = \sqrt{2} = 1.4$	(4.ار 3)	
$4 \sqrt{4-1} = \sqrt{3} = 1.7$	(4,1,7)	

one to one function

(c)
$$f(x) = |x|$$

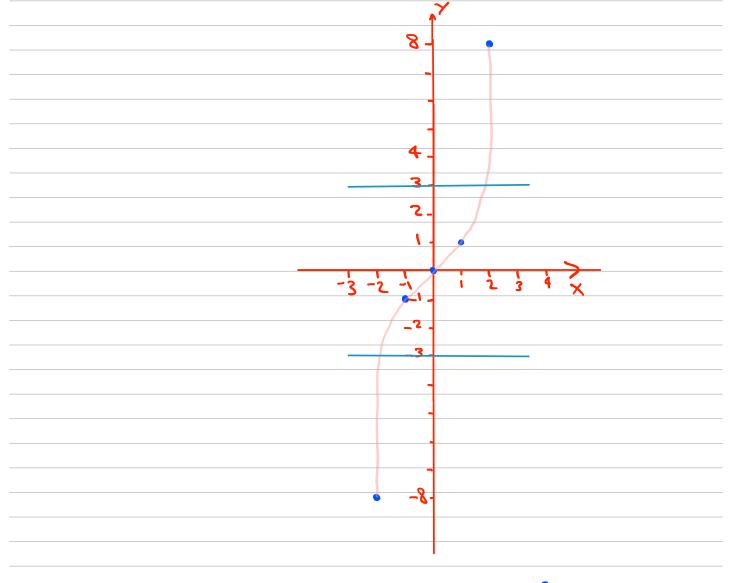
X -2	$\frac{y=f(x)= x }{ -2 =2}$	(X,Y) (-2,2)
-1	_1 =	(_l,l_)
0	0 = 0	(٥ , ٥)
	=	(,)
2	121 = 2	(2,2)



not one to one function

(d)	f(x)	$= x^3$
(u)	J(A)	$J - \Lambda$

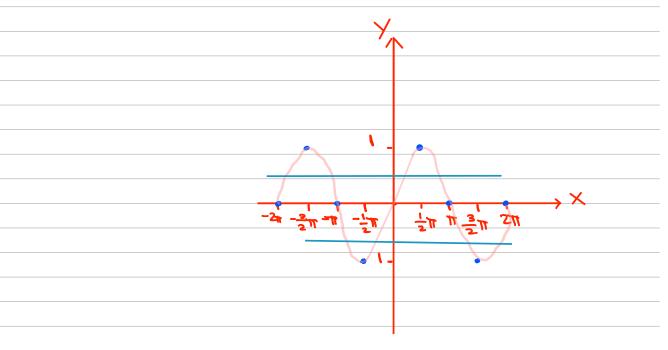
X -2	$y = f(x) = x^3$ $(-2)^3 = -8$	(X,Y) (-2,_8)
-1	(_1) = _1	(ا_ر ا_)
0	$\left(0\right)^{3}=0$	(٥ , ٥)
1	(1) =	(,)
2	$(2)^3 = 8$	(2,8)



one to one function

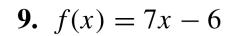
(f) $f(x) = \sin x$

×	Y=SinX	(X,Y)
1 T	$Sin(\frac{1}{2}\pi)=1$	$\left(\frac{1}{2}\Pi_{\downarrow}\right)$
П	$Sin(\pi)=0$	(T _0)
2TT	$Sin(2\pi)=0$	(2π,0)
<u>3</u> π	Sin(3 π)=-1	(ا-و ۱۱ 🔁
$-\frac{3}{2}\Pi$	=	(- 3 π, \)
_2T	= 0	(-2 π,0)
<u></u>	= 0	(o _{t TT})0)
$-\frac{1}{2}\Pi$	=-	(- 1 II - ()



one to one function

9–16 Find a formula for $f^{-1}(x)$.



$$Y_{=}7X_{-6}$$

$$Y_{+}6 = 7x$$

$$X = \frac{y_+ 6}{7}$$

$$f^{-1}(y) = \frac{y_{+6}}{7}$$

$$f^{-1}(x) = \frac{x+6}{7}$$

10. $f(x) = \frac{x+1}{x-1}$

$$y=\frac{X+1}{X-1}$$

$$Y(X-1)=(X+1)$$

$$\lambda X - \lambda = X + 1$$

$$\lambda X^{-}X = \lambda + 1$$

$$X(\lambda - 1) = \lambda + 1$$

$$X = \frac{y+1}{y-1}$$

$$f^{-1}(y) = \frac{y+1}{y-1}$$

$$f^{-1}(x) = \frac{X+1}{X-1}$$

11. $f(x) = 3x^3 - 5$

$$Y + 5 = 3X^{3}$$

$$X = \frac{1}{3}$$

$$\sqrt[3]{X_3} = \sqrt[3]{\frac{3}{\lambda + 2}}$$

$$X = \sqrt[3]{\frac{\lambda + 2}{3}}$$

$$f^{-1}(y) = \sqrt[3]{\frac{\lambda + 2}{3}}$$

$$f(X) = \sqrt[3]{X+5}$$

12. $f(x) = \sqrt[5]{4x+2}$

$$Y_{=}\sqrt[5]{4x_{+}2}$$

$$(y)^{5} = (\sqrt[5]{4x+2})^{5}$$

$$Y=4X+2$$

$$y^{5}_{2} = 4x$$

$$X = \frac{y^5}{4}$$

$$f^{-1}(y) = \frac{y^5}{4}$$

$$f^{-1}(x) = \frac{x^{5}}{4}$$

13. $f(x) = 3/x^2$, x < 0

$$\lambda = \frac{\chi_s}{3}$$

$$\sqrt{X^2} = \sqrt{\frac{3}{y}}$$

$$X = \sqrt{\frac{3}{y}}$$

$$f^{-1}(y) = \sqrt{\frac{3}{y}}$$

$$f^{-1}(x) = \sqrt{\frac{3}{x}}$$

17–20 Find a formula for $f^{-1}(x)$, and state the domain of the function f^{-1} .

17.
$$f(x) = (x+2)^4, \quad x \ge 0$$

$$Y_{=}(x+2)^{4}$$

$$\sqrt[4]{y} = \sqrt[4]{(x+2)^4}$$

$$\sqrt[4]{y} = x + 2$$

$$X = \sqrt[4]{y} - 2$$

$$f^{-1}(x) = \sqrt[4]{x} - 2$$

Domains

18. $f(x) = \sqrt{x+3}$

$$Y = \sqrt{X + 3}$$

$$(Y)^2 (\sqrt{X+3})^2$$

$$y^2 = X+3$$

$$X = Y_{2}$$
 3

$$f^{-1}(x) = x^2 - 3$$

Domains

$$D^{t} = X + 3 > 0 = X > -3 = [-3, +\infty)$$

Ranges

$$X \ge 3$$
, $X+3 \ge 3+3$, $X+3 \ge 0$

$$\sqrt{X+3} \geqslant \sqrt{6}$$
 $\sqrt{X+3} \geqslant 6$ $\sqrt{0}$ $\sqrt{0}$

$$K^{t} = D_{L_{1}} = [0, +\infty)$$

$$D_{f'} = [0, +\infty)$$

19.
$$f(x) = -\sqrt{3-2x}$$

$$Y = \sqrt{3} - 2X$$

$$y_{=}^{2}(\sqrt{3}2x)^{2}$$

$$y_{=}^{2} 3_{2} X$$

$$Y^2 3 = 2X$$

$$X = \frac{y^2}{2}$$

$$f^{-1}(x) = \frac{x^2}{2}$$

Domains

$$D_{f} = 3 - 2x > 0$$
 _ 3 $> 2x$ _ $x \le \frac{3}{2}$ _ $(-\infty, \frac{3}{2}]$

Ranges

$$X \leqslant \frac{3}{2}$$
 ___ 2 X \leq 3 ___ 2 X__ 3 \leq 3__ 3

$$\mathsf{K}^{\mathsf{t}} = \mathsf{D}^{\mathsf{t}_{\mathsf{l}}} = (-\infty, 0)$$

$$D_{f}^{-1}=(-\infty,0]$$

21-24	True-False	Determine whether the statement is true or
false. E	xplain your a	inswer.

22. If f and g are inverse functions, then f and g have the same domain. (\Box)

$$f(X) = 1 + \frac{1}{X} \longrightarrow D_f = R - \{0\}$$

$$g(X) = \frac{1}{X} \rightarrow D_g = R - \{1\}$$