

Ex	kercise set (4.5):
Exercise 4.5 P.239: P. 240: 14-15(b)-16(a)	Quick check ex.3 (a-b)-17(a-c-d)-22-23-24-33(b)

3. Use the accompanying figure to evaluate

$$\int_2^7 (2x - 8) \, dx$$

$$=\frac{1}{2}(6)(3)-\frac{1}{2}(4)(2)$$

⋖ Figure Ex-3

13–16 Sketch the region whose signed area is represented by the definite integral, and evaluate the integral using an appropriate formula from geometry, where needed.

- **14.** (a) $\int_0^2 \left(1 \frac{1}{2}x\right) dx$ (b) $\int_{-1}^1 \left(1 \frac{1}{2}x\right) dx$
- - (c) $\int_{2}^{3} \left(1 \frac{1}{2}x\right) dx$
- (d) $\int_{0}^{3} \left(1 \frac{1}{2}x\right) dx$

- /_ \ (0, \)

- $\gamma_{=0}$ (2,0)
- A = area of triangle
 - = 1 (base. height)

$$\frac{1}{2}\left(1\right) = \frac{1}{2}\left(1\right) = \frac{1}{2}\left(\frac{1}{2}\right)$$

$$\frac{1}{2}(-1) = \frac{3}{2}(-1) = \frac{3}{2}$$

A = area of trapezoid

$$=\frac{1}{2}(3/2+\frac{1}{2}).2$$

$$C)\int_{2}^{3}(1-\frac{1}{2}\chi)d\chi$$

at X = 2

$$Y_{1} = \frac{1}{2}(2) = 1 = 0$$

(2,0)

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

 $(3, -\frac{1}{2})$

A = area of triangle

$$=-\frac{1}{2}\left(\frac{1}{2}\right)\left(1\right)=-\frac{1}{4}$$

$$\frac{1}{3}\left(1-\frac{1}{2}\chi\right)Q\chi$$

$$\frac{1}{2} \left(0 \right) \longrightarrow \frac{1}{2} \left(0 \right) \left(0 \right) \left(0 \right)$$

$$Y = 1 - \frac{1}{2}(3) \implies Y = -\frac{1}{2}(3) - \frac{1}{2}$$

$$\frac{1}{2} = 0 \Rightarrow 0 = 1 - \frac{1}{2} \times \Rightarrow \frac{1}{2} = 1$$

$$=\frac{1}{2}(b_1h_1)-\frac{1}{2}(b_2h_2)$$

$$-\frac{1}{2}(2.1) - \frac{1}{2}(1.\frac{1}{2})$$

$$= 1 - \frac{1}{4} - \frac{3}{4}$$

15.	(b)	\int_0^{π}	$\cos x dx$
		. 0	

$$Y = CoSo \Rightarrow Y = I$$
 (0,1)

$$Y = (0S\pi = Y = 1)$$

A = area of Circle

16. (a)
$$\int_{-10}^{-5} 6 \, dx$$

(b)
$$\int_{-\pi/3}^{\pi/3} \sin x \, dx$$

$$Y = Sin(\pi/3) = \sqrt{3}$$

$$= A_1 - A_2 = \frac{1}{4} \pi (1)^2 - \frac{1}{4} \pi (-1)^2$$

17. In each part, evaluate the integral, given that

$$f(x) = \begin{cases} |x - 2|, & x \ge 0 \\ x + 2, & x < 0 \end{cases}$$

(a) $\int_{-2}^{0} f(x) dx$

(b) $\int_{-2}^{2} f(x) \, dx$

(c) $\int_0^6 f(x) \, dx$

(d) $\int_{-4}^{6} f(x) \, dx$

 $a)\int_{-2}^{6} x + 2 dx$

$$Y=X+2$$

at X = 2

$$Y_{=-2+2} \rightarrow Y_{=0} \qquad (-2,0)$$

at X = 0

$$Y=0+2 \longrightarrow Y=2$$
 (0,2)

A= area of triangle

$$=\frac{1}{2}(b.h)=\frac{1}{2}(2)(2)=2$$

$$Y=16-21=Y=141=4$$
 (6,4)

$$\int_{6}^{4} f(x) dx = \int_{4}^{4} f(x) dx + \int_{6}^{6} f(x) dx$$

$$= \int_{-4}^{6} x + 2 dx + \int_{0}^{6} |x - 2| dx$$

$$= \int_{0}^{4} x + 2 dx + 10$$

$$Y = 0 + 2 \Rightarrow Y = 2$$
 (0,2)

$$= \frac{1}{2}b_1h_1 - \frac{1}{2}b_2h_2$$

$$= \frac{1}{2}(2)(2) - \frac{1}{2}(2)(2) = 2 - 2 = 0$$

22. Find
$$\int_{1}^{4} [3f(x) - g(x)] dx$$
 if
$$\int_{1}^{4} f(x) dx = 2 \text{ and } \int_{1}^{4} g(x) dx = 10$$

$$= 3/f(x)dx - /f9wdx$$

$$= 3(2) - 10 = 6 - 10 = -4$$

23. Find
$$\int_{1}^{5} f(x) dx$$
 if

$$\int_0^1 f(x) \, dx = -2 \quad \text{and} \quad \int_0^5 f(x) \, dx = 1$$

$$\int_{2}^{2} f(x) dx = \int_{1}^{2} f(x) dx + \int_{2}^{2} f(x) dx$$

$$1 = -2 + \int_{1}^{3} f(x) dx$$

$$1 + 2 = \int_{1}^{3} f(x) dx$$

$$\int_{0}^{2} f(x) dx = 3$$

24. Find $\int_{3}^{-2} f(x) dx$ if $\int_{-2}^{1} f(x) dx = 2 \quad \text{and} \quad \int_{1}^{3} f(x) dx = -6$

$$\int_{3}^{2} f(x) dx = -\int_{-2}^{3} f(x) dx$$

$$= - \left[\int_{-2}^{1} f(x) dx + \int_{1}^{3} f(x) dx \right]$$

$$= (2 + (-6)) = (2 - 6) = 4$$

33–34 Use Theorem 4.5.6 to determine whether the value of the integral is positive or negative. ■

33. (b)
$$\int_0^4 \frac{x^2}{3 - \cos x} \, dx$$

$$\chi^2 > 0$$
 for all χ

$$-1 \leq CoS \times \leq 1$$

$$\int_{0}^{4} \frac{x^{2}}{3-\cos x} dx > 0$$