

Exercise set (4.3):

Exercise 4.3. P.221-222: 1-2(a-b)-4(b)-5-6(b)-7-15-20-21-27-29-33

1–12 Evaluate the integrals using the indicated substitutions.

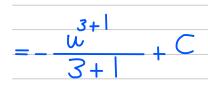
1. (a) $\int 2x(x^2+1)^{23} dx; \ u = x^2+1$ (b) $\int \cos^3 x \sin x \, dx; \ u = \cos x$ a) $u = \chi_{+}^{2}$ du = 2XdX

 $\int \mathcal{U}^{23}$ du 23 ⊥ 24

L C

b) u = CoS X

 $\int (u^3) du = \int u^3 du$



<u>u</u> 4

2. (a) $\int \frac{1}{\sqrt{x}} \sin \sqrt{x} \, dx; \ u = \sqrt{x}$ $u = \sqrt{X}$ $du = \frac{1}{2\sqrt{X}}dX$ $2du = \frac{1}{\sqrt{X}}dX$ JSin(u).2du $=2\int Sin(u) du$ $= 2 Cos w_{+} C$ $= 2 \cos \sqrt{x} + c$

(b) $\int \frac{3x \, dx}{\sqrt{4x^2 + 5}}; \ u = 4x^2 + 5$ $u = 4X^{2} + 5$ $du = 8 \times d \times -, \frac{du}{8} = \times d \times$ $= 3 \int \frac{du}{8\sqrt{u}} = \frac{3}{8} \int \frac{du}{\sqrt{u}}$ <u>-3.2/u</u>+C $=\frac{6}{8}\sqrt{4\chi^{2}+5}+C$ $=\frac{3}{4}\sqrt{4\chi^{2}+5}+C$

3. (a)
$$\int \sec^2(4x+1) dx$$
; $u = 4x + 1$
 $du = 4 dX \rightarrow \frac{du}{4} = dX$
 $= \int \sec^2(u) \frac{du}{4} = \frac{1}{4} \int \sec^2(u) du$
 $= \frac{1}{4} \tan u + C$
 $= \frac{1}{4} \tan (4X+1) + C$

(b) $\int y\sqrt{1+2y^2} \, dy; \ u = 1+2y^2$ $\frac{du}{4} = Y dY$ du = 4 Y dYdu (u) du <u>|</u> 4 <u>W</u> + <u>|</u> 4 3/2 U + 2 3/2 U/ + C 2 $=\frac{1}{6}(|_{+}2y^{2})^{3/2}_{+}C$

4. (b) $\int (2x+7)(x^2+7x+3)^{4/5} dx; \ u = x^2+7x+3$ $u = X^{2} + 7X + 3$ du = 2X + 74/5 Ju $\frac{4/5+1}{4/5+1}$ + C =<u>u^{9/5}</u> 9/5 <u>5</u> 9)/5 U $=\frac{5}{9}(\chi^{2}+7\chi+3)^{9/5}+C$

5. (a) $\int \cot x \csc^2 x \, dx; \ u = \cot x$ (b) $\int (1 + \sin t)^9 \cos t \, dt; \ u = 1 + \sin t$ a)u = Cot X $du = CSC^2 \times dx = du = CSC^2 \times dx$ $\int u(-du) = \int u du$ $\frac{u^2}{2} + C$ $-\frac{\cot^2 X}{2} + C$ b)u=1+Sintdu=Castdt Judu <u>u</u> 10 10 <u>(|+Sint)</u>

6. (a) $\int \cos 2x \, dx; \ u = 2x$ $du = 2dX - \frac{du}{2} = dX$ [Cas (u) du _2 $= \frac{1}{2} Sin(u) + C$ $=\frac{1}{2}Sin(2X) + C$

(b) $\int x \sec^2 x^2 dx; \ u = x^2$ $u = X^{2}$ du = 2Xdx $\frac{du}{2} = X dx$ Jsecu. <u>du</u> =<u>1</u>Jsec²u du <u>-</u> tan X² + C

7. (a) $\int x^2 \sqrt{1+x} \, dx; \ u = 1+x$ (b) $\int [\csc(\sin x)]^2 \cos x \, dx; \ u = \sin x$ a)u=1+Xdu-dx $u = I_{+} X _, u_{-} I = X _, (u_{-} I)^{2} = X^{2}$ $\int (u_1)^2 \sqrt{u} \, du$ $= \int (u^{2} - 2u + 1) (u^{1/2}) du = \int (u^{2+1/2} - 2u + u^{1/2}) du$ $=\int \left(\frac{5}{2} \frac{3}{2} \frac{3}{2} \frac{1}{2} \frac{1}{2} \right) du$ $\frac{5/2+1}{4} - 2 \frac{u}{3/2+1} + \frac{1/2+1}{1/2+1} + C$ $=\frac{\frac{3^{2}}{2}}{7/2}-2\frac{\frac{5^{2}}{2}}{5/2}+\frac{3^{2}}{3/2}+C$ $= \frac{2}{7} \frac{u^{7/2}}{2} - 2\left(\frac{2}{5}\right) \frac{5^{1/2}}{4} + \frac{2}{3} \frac{3^{1/2}}{4} + C$ $= \frac{2}{7} u^{7/2} - \frac{4}{5} u^{5/2} + \frac{2}{3} u^{3/2} + C$ $= \frac{2}{7} (I_{+} X)^{7/2} - \frac{4}{5} (I_{+} X)^{5/2} + \frac{2}{3} (I_{+} X)^{3/2} + C$

b)u=SinXdu=Cos XdX $\int (CSC(u))^2 du$ $= -Cotu_+C$ = Cot(SinX) + C

11–36 Evaluate the integrals using appropriate substitutions. **11.** $\int (4x-3)^9 dx$ w = 4X - 3dw = 4 dx, $\frac{dw}{4} = dx$ w du 0 Ú w + C 4 -0 (4X-3) 4 0

12. $\int x^3 \sqrt{5 + x^4} \, dx$ u = 5 + X4 $dw = 4 \chi^3 dx , \frac{dw}{4} = \chi^3 dx$ Ju du 3/2 U 3/2 U + (23 3/2 U 2 $\frac{1}{6} (5 + \chi^{4})^{3/2} + C$

13. $\int \sin 7x \, dx$ – w = 7X $dw = 7 dx , \frac{dw}{7} = dx$ Sin(w) dw $\frac{1}{7}CoS(w) + C$ $-\frac{1}{7}$ Cos(7X) + C 14. $\int \cos \frac{x}{3} dx$ w = X/3 $dw = \frac{1}{3} dx = \frac{3}{3} dw = dx$ -3(Cos(w)dw) $=3Sin(u)_{+}C$ $=3Sin\left(\frac{X}{3}\right)+C$

15. $\int \sec 4x \tan 4x \, dx$ u = 4X $du = 4 dX - \frac{du}{4} = dX$ $\int sec(u) tan(u) \frac{du}{4}$ $= \frac{1}{4} \operatorname{JSec}(u) \tan(u) du$ <u>-</u>4 Sec(u)₊C <u>- |</u> Sec(4X) ₊C

16. $\int \sec^2 5x \, dx =$ u = 5X $du = 5 dX - \frac{du}{5} = dX$ $\frac{1}{5}$ [Sec(u)du $tan(u)_+C$ $=\frac{1}{5}$ =<u>t</u>tan(5X)₊C

17. $\int t\sqrt{7t^2+12}\,dt$ $w = 7t^{2} + 12$ dw = 14t dt1u Ju 3/2 Ur 3/ 7 L C 14 3/2 _________ 2 3 -<u>3/2</u> U 3/2 U/ + 21 3/2 12)__C $(7t^{2})$

18. $\int \frac{x}{\sqrt{4-5x^2}} dx$ _____ $u = 4 - 5 X^{2}$ du = lo X dX du = X dX $\int \frac{dw}{\sqrt{w}}$ $= -\int w^{-1/2} dw$ $= -\frac{|}{|0|^{1/2}} + C$ $-1.2 w''_{+}C$ $-\frac{1}{5}w''_{+}C$ $-\frac{1}{5}(4-5X^{2})^{1/2}+C$ $-\frac{1}{5}\sqrt{4}-5X^{2}+C$

19. $\int \frac{6}{(1-2x)^3} dx$ u = | -2X $-\frac{du}{dt} = dX$ du = 2 dX $-\frac{6}{2}\int \frac{1}{3} du$ $=-3\int u^{-3} du$ $=-3.\frac{w}{2}+C$ $\frac{3}{2} \cdot \frac{1}{w^2} + C$ $= \frac{3}{2(1 2 X)^{2}} + C$

20. $\int \frac{x^2 + 1}{\sqrt{x^3 + 3x}} dx$ $n = X_3^+ 3X$ $du = 3X^2 + 3 dX - du = 3(X^2 + 1) dX$ $\frac{du}{2} = (X^2 + 1) dX$ $\frac{1}{3}\int \frac{\partial u}{\sqrt{u}} = \frac{1}{3}\int \frac{\partial u}{\frac{u'^2}{\sqrt{u}}}$ $\frac{1}{3} \int \overline{u}^{1/2} du = \frac{1}{3} \cdot \frac{\overline{u}^{1/2+1}}{-1/2+1} + C$ $-\frac{u^{1/2}}{\frac{1}{2}}$ + C 3 $-\frac{2}{2}u^{1/2}+C$ $\frac{2}{3}\sqrt{u}$ + C $=\frac{2}{3}\sqrt{X^{3}+3X}+C$

21. $\int \frac{x^3}{(5x^4+2)^3} \, dx$ $u = (5X^{4}+2)$ $\frac{du}{20} = X^3 dX$ $du = 20 X^3 dX$ <u>du</u> 20 $\frac{1}{u^3}$ du $\frac{1}{2}$ u⁻³ du u _2 U $\frac{1}{40}$ 40 1,2 $\frac{1}{(5X^{4}+2)^{2}}$ 40

22. $\int \frac{\sin(1/x)}{3x^2} dx =$ u = |X| $du = \frac{1}{X^2} dX - du = \frac{1}{X^2} dX$ [Sin(u)du $(-\cos u)_{+}C$ <u>|</u> 3 $=\frac{1}{3}C_{oS}(|X|_{+}C$

23. $\int \frac{\sin(5/x)}{x^2} dx$ u = 5/x $du = \frac{5}{x^2} dx = \frac{du}{x} = \frac{1}{x}$ $\frac{1}{X^2}dX$ Sin(u) du 5 $(_CoSu)_+C$ <u>- \</u> 5 $=\frac{1}{5}C_{0S}(\frac{5}{X})_{+}C$

 $24. \int \frac{\sec^2(\sqrt{x})}{\sqrt{x}} \, dx =$ $w = \sqrt{X}$ $dw = \frac{1}{2\sqrt{x}} dX , 2dw = \frac{1}{\sqrt{x}} dX$ $= 2 \int Sec^2 u du$ = 2 tanu + C = 2 tan VX + C

 $25. \int \cos^4 3t \sin 3t \, dt$ w=Cos3t $\frac{du}{3} = \sin 3t dt$ dw = 35in 3t dtu du 3 $\frac{5}{5}$ 3 <u>U</u> 15 $\frac{(\cos 3t)^{5}}{15}$

 $26. \int \cos 2t \sin^5 2t \, dt =$ w=Sin2t $du = 2\cos(2t)dt - \frac{du}{2} = \cos(2t)$ regr ι, 2 U C = <u>|</u> |2 = Sin(2t) + C

 $27. \int x \sec^2{(x^2)} dx$ $u = \chi^2$ $du = 2 \times d \times \underline{du} = \times d \times d$ $tan(u)_+C$ $\frac{1}{2}$ $\frac{1}{2} \tan(X)_{+}^{2}C$

29. $\int \cos 4\theta \sqrt{2 - \sin 4\theta} \, d\theta =$ $u = 2 - Sin 4 \Theta$ $du = Cos4\theta.4d\theta$ $\frac{du}{4} = \cos 4 \Theta d \Theta$ √u._<u>du</u> 4 $u'^2 du$ $\frac{1}{4} \cdot \frac{\omega^{3/2}}{3/2} + C$ $-\omega^{3/2} + C$. 2 <u>|</u> 4 w^{3/2} + C 2 $(2 Sin 4\Theta)^{3/2}$

30. $\int \tan^3 5x \sec^2 5x \, dx$ u = tan(5x) $du = 5 \sec^2(5x) dx - \frac{du}{5} = \sec^2(5x) dx$ u du 4 1/4 - +-C u 20 tan(5X) C

31. $\int \sec^3 2x \tan 2x \, dx$ sec(2x)sec(2x)tan(2x)dx w-Sec2X $du = 2 \sec 2x \tan(2x) dx$ $w = \sec 2x \tan(2x) dx$ wdu - V + 3 V <u>lsec</u>

 $33. \int \frac{y}{\sqrt{2y+1}} \, dy$ $u = 2Y_+$ $-\frac{du}{2} = dY$ du = 2 dY $u = 2Y_{+}I_{-}u_{-}I = 2Y$ Y_<u>u_l</u> $\frac{|\mathbf{u}_{\perp}|}{2\sqrt{\mathbf{u}}} \cdot \frac{\partial \mathbf{u}}{\partial \mathbf{u}}$ $=\frac{1}{4}\int \frac{U_{-1}}{U_{-1}^{1/2}} du$ $\int \frac{U}{U^{1/2}} - \frac{1}{U^{1/2}} \frac{\partial U}{\partial U}$ $\frac{1}{4}$ $\frac{1}{4} \left[u^{1/2} - \overline{u}^{1/2} \right]$ $\left(\frac{U}{3/2} - \frac{U^{1/2}}{1/2}\right) + C$ $-u^{3/2} - \frac{1}{4} \cdot 2 u^{1/2} + C$ 23 $\frac{2}{12}u^{3/2} - \frac{2}{4}u^{1/2} + C$ $-\frac{1}{2} \omega^{1/2} + C$ 3/2 . U

 $1)^{3/2} - \frac{1}{2} (2Y_{+}1)^{1/2} + C$ (2Y₊ 6

34. $\int x\sqrt{4-x} dx$ w = 4 - X - X = 4 - u_du =dX $(4_u)\sqrt{u} du$ $= - \left[(4 - u) (u)^{1/2} du \right]$ $\int (4u^{1/2} - u^{3/2}) du$ $\left(\frac{4u}{3/2} - \frac{5/2}{5/2}\right) + C$ $-\frac{8}{3}\frac{3/2}{1}+\frac{2}{5}\frac{5/2}{1}+\frac{2}{5}$ $)^{3/2} + \frac{2}{5} (4 - X)^{5/2} + C$ <u>- 8 (4 X</u>