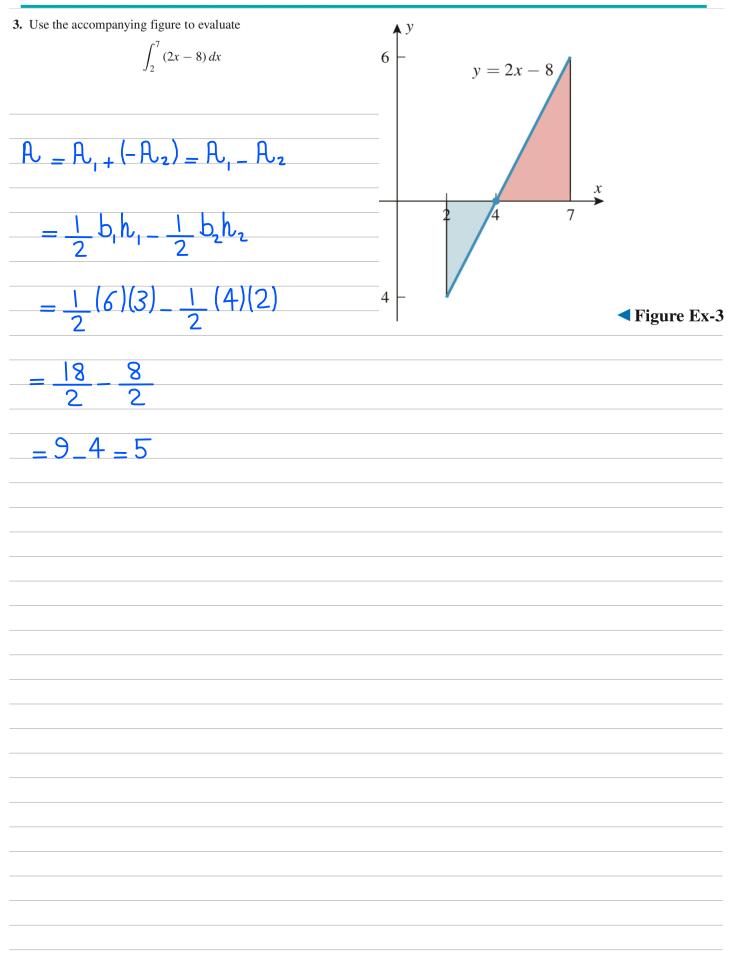


## Exercise set (4.5):

## Exercise 4.5 P.239: Quick check ex.3 P. 240: 14-15(b)-16(a-b)-17(a-c-d)-22-23-24-33(b)

## **V**QUICK CHECK EXERCISES 4.5 (See page 242 for answers.)



 $\int_{-2}^{1} g(x) dx = 5$  and  $\int_{1}^{2} g(x) dx = -2$ (a)  $\int_{1}^{2} 5g(x) dx$  $=5\int^2 g(x) dx$ \_5(-2) =\_0 (b)  $\int_{-2}^{2} g(x) \, dx$  - $\int_{-\infty}^{\infty} \frac{\partial f(x) dx}{\partial x} = \int_{-\infty}^{\infty} \frac{\partial f(x) dx}{\partial x} + \int_{-\infty}^{\infty} \frac{\partial f(x) dx}{\partial x}$ =5 (-2) (c)  $\int_{1}^{1} [g(x)]^2 dx$  \_\_\_\_\_ (d)  $\int_{2}^{-2} 4g(x) dx$  —  $-4 \int_{-2}^{2} g(x) dx = -\int_{-2}^{1} g(x) dx - \int_{-2}^{2} g(x) dx$ = 4(-5(-2))=4(-5+2)=-12

**13–16** Sketch the region whose signed area is represented by the definite integral, and evaluate the integral using an appropriate formula from geometry, where needed.

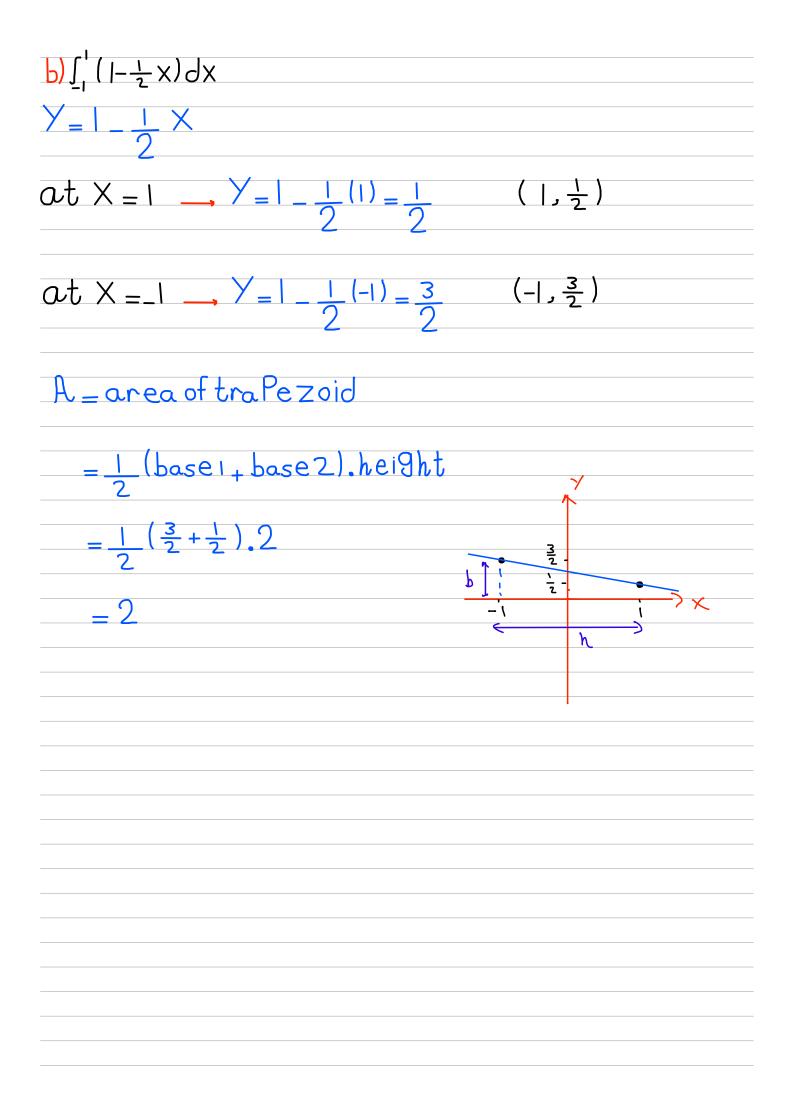
**13.** (a)  $\int_0^3 x \, dx =$ Y = Xat X = 0 Y = 0(0,0)at X = 3 Y = 3(3,3) A=area of triangle 3 <u>(base.height)</u> h  $= \frac{1}{2}(3)(3) = \frac{9}{2}$ .3

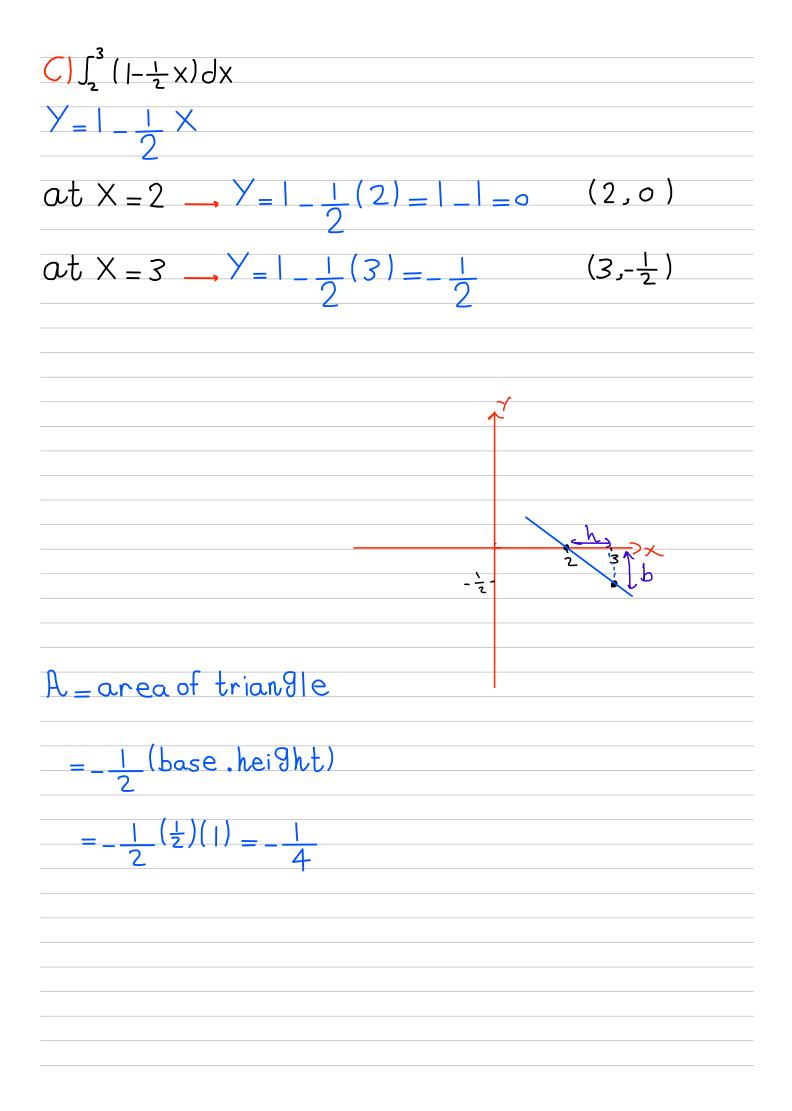
| (b) $\int_{-2}^{-1} x  dx$          |                               |
|-------------------------------------|-------------------------------|
| Y = X                               |                               |
| at X = 2 _, Y = _2                  | (-2,-2)                       |
| at X = 1 , $Y = -1$                 | (_ _,_ )<br>✓                 |
|                                     | h                             |
| b_                                  | $-2$ $ $ $\rightarrow \times$ |
| A = area of traPezoid               | -2                            |
| $=-\frac{1}{2}(base1+base2).height$ |                               |
| $=-\frac{1}{2}(2+1).(1)$            |                               |
| $=-\frac{3}{2}$                     |                               |
|                                     |                               |
|                                     |                               |
|                                     |                               |

(c)  $\int_{-1}^{4} x \, dx$ Y = Xat X = 1 , Y = -(\_| , \_|) at X = 4 Y = 4(4,4) A=area of triangle 4  $= \mathbb{A}_{1+}(-\mathbb{A}_{2})$  $= A_1 - A_2$  $= \frac{1}{2} (b_{1})(h_{1}) - \frac{1}{2} (b_{2})(h_{2})$  $= \frac{1}{2} (4)(4) - \frac{1}{2} (1)(1)$ \_ <u>|6</u> \_\_\_ · 7 = 8 1 2 15

(d)  $\int_{-5}^{5} x \, dx$ Y = Xat X = -5 - Y = -5(\_5,\_5) at X = 5  $\rightarrow$  Y = 5 (5,5) A=area of triangle 5  $= \mathbb{A}_{1+}(-\mathbb{A}_{2})$  $= A_1 - A_2$ 5  $= \frac{1}{2} (b_1)(h_1) - \frac{1}{2} (b_2)(h_2)$  $= \frac{1}{2} (5)(5) - \frac{1}{2} (5)(5)$ \_ 0

14. (a) 
$$\int_{0}^{2} (1 - \frac{1}{2}x) dx$$
 (b)  $\int_{-1}^{1} (1 - \frac{1}{2}x) dx$   
(c)  $\int_{2}^{3} (1 - \frac{1}{2}x) dx$  (d)  $\int_{0}^{3} (1 - \frac{1}{2}x) dx$   
a)  $Y = 1 - \frac{1}{2} X$   
at  $X = 0$   $Y = 1 - \frac{1}{2} (0) = 1$  (0,1)  
at  $X = 2$   $Y = 1 - \frac{1}{2} (2) = 0$  (2,0)  
A = area of triangle  
 $= \frac{1}{2} (base .height)$   
 $= \frac{1}{2} (1)(2) = 1$ 





 $d \int_{a}^{3} \left( \left| -\frac{1}{2} \right| \right) dx$ \_ X 2 <u>|(0) \_</u> at X = 0اره) at X = 3= <u>|</u> 2  $(3, -\frac{1}{2})$ 3  $\frac{1}{2}$  X Y = 0 \_, 0 =  $\frac{X}{2} =$ X = 2A=area of triangle  $= \mathbb{R}_{1+}(-\mathbb{R}_{2})$ A.  $= A_1 - A_2$  $\frac{1}{2}$  $= \frac{1}{2} (b_{1})(h_{1}) - \frac{1}{2} (b_{2})(h_{2})$  $=\frac{1}{2}$ <u> 3</u> 4 4 Δ

| <b>15.</b> (a) $\int_0^5 2  dx$ |                      |
|---------------------------------|----------------------|
| Y = 2                           | $\bigwedge^{\gamma}$ |
| R = 2.5 = 10                    | 2                    |
|                                 |                      |
|                                 | 5                    |
|                                 |                      |
|                                 | 1                    |
|                                 |                      |
|                                 |                      |
|                                 |                      |
|                                 |                      |
|                                 |                      |
|                                 |                      |
|                                 |                      |
|                                 |                      |
|                                 |                      |
|                                 |                      |

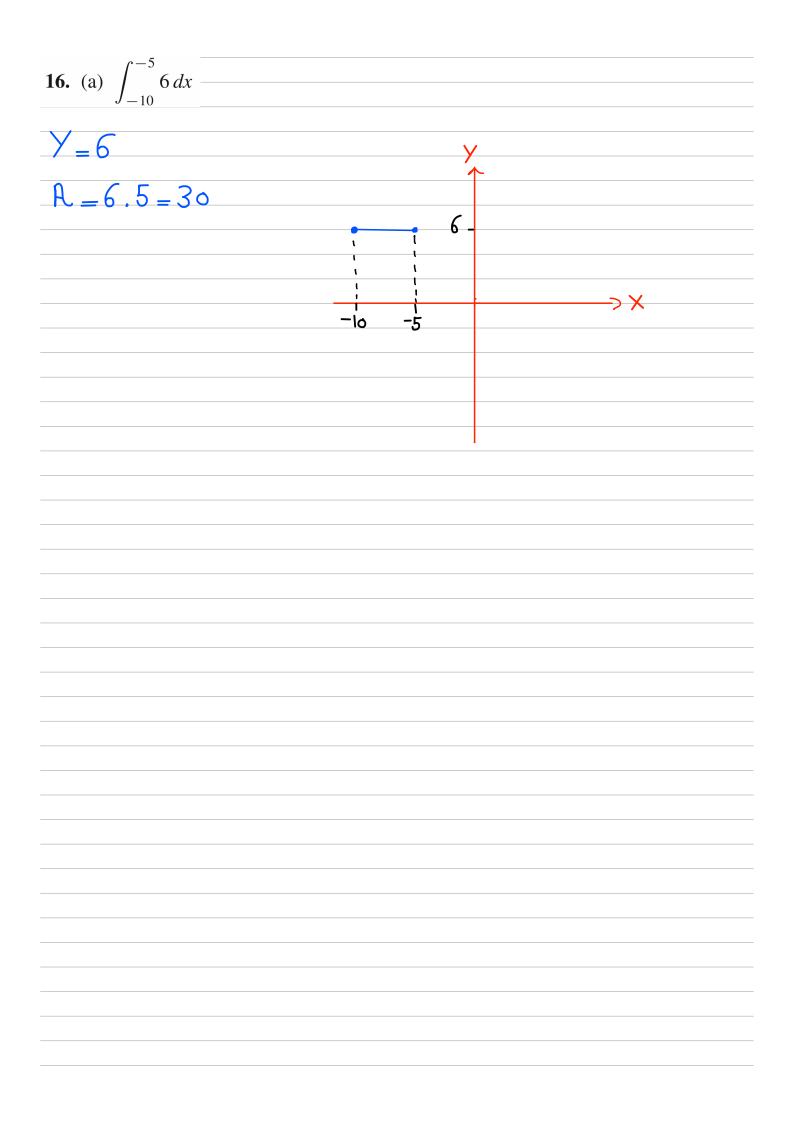
(b)  $\int_0^{\pi} \cos x \, dx$ 

Y = CoSX

at X = 0 Y = Coso = 1 (0,1)

at  $X = \pi$   $Y = CoS \pi = 1$  ( $\pi$ -1)

A=area of Circle  $= \mathbb{A}_{1+}(-\mathbb{A}_{2})$  $= R_1 - R_2$  $= \frac{1}{4} \prod (r_{1}^{2}) = \frac{1}{4} \prod (r_{2}^{2})$  $= \frac{|}{4} \Pi (|^{2}) = \frac{|}{4} \Pi (-|^{2})$  $= \frac{|}{4} \prod_{i=1}^{m} \prod_{j=1}^{m} \prod_{j=1}^{m} \prod_{j=1}^{m} \prod_{i=1}^{m} \prod_{j=1}^{m} \prod_{j=1$ = 0 $A_1 = A_2$ 



(b)  $\int_{-\pi/3}^{\pi/3} \sin x \, dx$ Y=Sin X  $at X = \pi/3 \longrightarrow Y = \sin(\pi/3) = \sqrt{3}/2$  ( $\pi/3, \sqrt{3}/2$ )  $at X = \frac{\pi}{3} / \frac{\pi}{3}$ A=area of Circle  $= \mathbb{R}_{1+}(-\mathbb{R}_{2})$  $= A_1 - A_2$  $= \frac{1}{4} \pi (r_{1}^{2}) - \frac{1}{4} \pi (r_{2}^{2})$ -π'/γ π/γ  $= \frac{|}{4} \pi (|^{2}) - \frac{|}{4} \pi (-|^{2})$  $= \frac{|}{4} \prod_{i=1}^{I} \prod_{j=1}^{I} \prod_{j=1}^{I} \prod_{j=1}^{I} \prod_{i=1}^{I} \prod_{j=1}^{I} \prod_{j=1$ = 0  $A_1 = A_2$ 

17. In each part, evaluate the integral, given that

$$f(x) = \begin{cases} |x-2|, & x \ge 0\\ x+2, & x < 0 \end{cases}$$

| (a) $\int_{-2}^{0} f(x) dx$  |                 |      |
|------------------------------|-----------------|------|
| $Y_{=X+2}$                   |                 |      |
| at X = 2, $Y = 2+2 = 0$      | (-2,0)          |      |
| at X = 0 , $Y = 0 + 2 = 2$   | (0,2)           |      |
| A=area of triangle           | Y               |      |
| $=\frac{1}{2}$ (base.height) | 2               | fh X |
| $=\frac{1}{2}(2)(2)$         | - <u>2</u><br>b |      |
| $=\frac{4}{2}$               |                 |      |
| = 2                          |                 |      |
|                              |                 |      |
|                              |                 |      |

(c)  $\int_0^6 f(x) \, dx_-^{-1}$  $=\int_{a}^{6} |X_2| dX$ (0, 2) $Y_{-}X_{-}2$ (6, 4)Y=0\_,0=X\_2\_, X=2 at X = 0 ,  $Y = |0|^2 ||-2|| = 2$ (0,2)at X = 6 Y = 6 - 2 = 4 = 4 (6, 4) A=area of triangle  $= A_1 + A_2$  $= \frac{1}{2} (b_{1})(h_{1}) + \frac{1}{2} (b_{2})(h_{2})$  $= \frac{1}{2} (2)(2)_{+} \frac{1}{2} (4)(4)$ =2+8 b \_ 0

(d)  $\int_{-4}^{6} f(x) dx$  $\int_{-4}^{6} f(X) dX = \int_{-4}^{9} f(X) dX + \int_{0}^{6} f(X) dX$  $=\int_{-4}^{9} (X+2) dX + \int_{0}^{6} |X-2| dX$  $=\int_{-4}^{0} (X+2) dX + 0$  $Y_{-} X + 2$ at X = 0 Y = 0 + 2 = 2(0, 2)at  $X = -4 - \frac{1}{2} = -4 + 2 = -2$ (-4, -2)A=area of triangle  $= A_{1+}(-A_{2})$  $= A_1 - A_2$  $= \frac{1}{2} (b_1)(h_1) - \frac{1}{2} (b_2)(h_2)$  $= \frac{1}{2} (2)(2) - \frac{1}{2} (2)(2)$ = 2 \_ 2 - 0  $\int_{-4}^{6} f(X) dX = \int_{-4}^{6} (X+2) dX + 0$ =0 + 0 = 0

18. In each part, evaluate the integral, given that  $f(x) = \begin{cases} 2x, & x \le 1\\ 2, & x > 1 \end{cases}$ (a)  $\int_0^1 f(x) dx$  $x dx = \frac{2x^2}{2}$ = X<sup>2</sup> 0 (b)  $\int_{-1}^{1} f(x) dx$  $2 \times dX = \frac{2 \times^2}{2}$ = X<sup>2</sup> (-|) = 0

(c)  $\int_{1}^{10} f(x) dx$  \_\_\_\_\_  $\int_{1}^{10} 2 dx = 2 \times \int_{1}^{10}$  $= 2(1_0) - 2(1)$ -20-2 8 (d)  $\int_{1/2}^{5} f(x) dx =$  $\int_{1/2}^{5} f(x) dx = \int_{1/2}^{1} f(x) dx + \int_{1}^{5} f(x) dx$  $=\frac{2X^{2}}{2}\Big|_{1}^{1}+(2X)\Big|_{1}^{5}$  $= (\chi^{2})^{+}_{/_{2}} + (2\chi)^{5}_{/_{1}}$  $(1^{2} / 2) + (2.5 - 2.1)$ + 8 3 4 35

21. Find 
$$\int_{-1}^{2} [f(x) + 2g(x)] dx$$
 if  
 $\int_{-1}^{2} f(x) dx = 5$  and  $\int_{-1}^{2} g(x) dx = -3$ 

22. Find 
$$\int_{1}^{4} [3f(x) - g(x)] dx$$
 if  
 $\int_{1}^{4} f(x) dx = 2$  and  $\int_{1}^{4} g(x) dx = 10$ 

$$=3\int_{1}^{4}f(x)dx = \int_{1}^{4}g(x)dx$$

=3(2)\_10

=6\_10

\_\_4

**23.** Find  $\int_{1}^{5} f(x) dx$  if  $\int_{0}^{1} f(x) dx = -2$  and  $\int_{0}^{5} f(x) dx = 1$ 

 $\int_{a}^{5} f(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{5} f(x) dx$ 

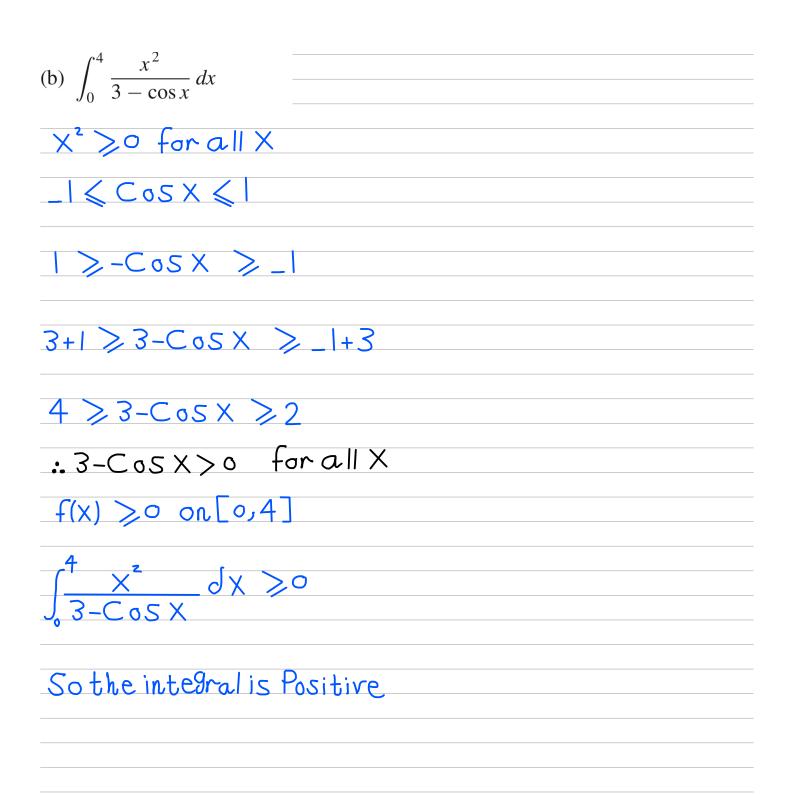
 $1 = -2 + \int_{1}^{5} f(x) dx$  $1 + 2 = \int_{1}^{5} f(x) dx$ 

 $\int_{1}^{5} f(x) dx = 3$ 

**24.** Find  $\int_{3}^{-2} f(x) \, dx$  if  $\int_{-2}^{1} f(x) dx = 2$  and  $\int_{1}^{3} f(x) dx = -6$  $\int_{3}^{-2} f(x) dx = -\int_{2}^{3} f(x) dx$  $= -\left[ \int_{x}^{1} f(x) dx + \int_{x}^{3} f(x) dx \right]$ = -(2 + (-6))= -(2 - 6)\_ 4

**33–34** Use Theorem 4.5.6 to determine whether the value of the integral is positive or negative. ■

(a)  $\int_{2}^{3} \frac{\sqrt{x}}{1-x} dx$  $\sqrt{X}$ \_\_\_\_X ≫2 \_\_\_,(I\_\_X)<∘  $f(x) = \frac{\sqrt{x}}{\sqrt{x}} < 0 \quad \text{on } [2,3]$ So the integral is negative on [2,3]



**34.** (a)  $\int_{-3}^{-1} \frac{x^4}{\sqrt{3-x}} dx$  $X^{\ddagger} \geq 0 \quad X \geq 0$ √3\_X ≥0 on [-1,-3] So the integral is Positive on [-1,-3] (b)  $\int_{-2}^{2} \frac{x^3 - 9}{|x| + 1} dx$  $X^{3}_{9} < 0 \text{ on } [-2,2]$  $|X|_{+1} > 0 \quad 0n \quad [-2, 2]$ So the integral is negative on [-2,2]