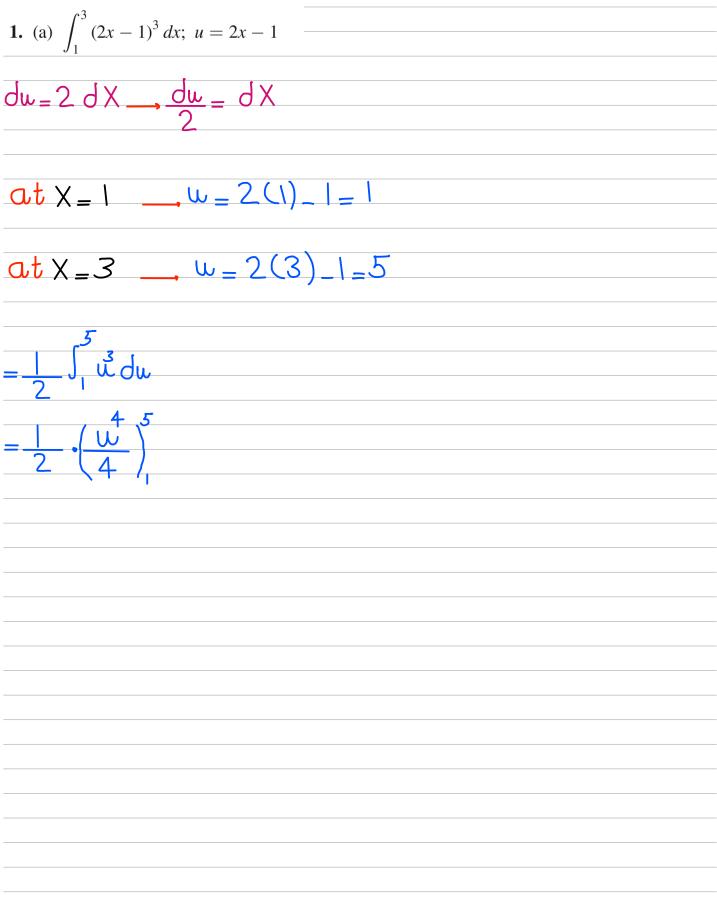


Exercise set (4.9):

Exercise 4.9 P.270-271: 1(b-c)-2(b-c)-9-13-14-25-28-33-37

1–4 Express the integral in terms of the variable u, but do not evaluate it.



(b) $\int_0^4 3x\sqrt{25-x^2} \, dx; \ u = 25-x^2$ $w = 25 X^2$ du = 2XdX - du = XdX_w=25_0² =25 at X = 0 $w = 25 - 4^2 = 9$ at X = 4J, 3√u <u>du</u> 2 _<u>3</u> J, 3√u du

(c) $\int_{-1/2}^{1/2} \cos(\pi\theta) \, d\theta; \ u = \pi\theta$ ω=ΠΘ $du = \Pi d\Theta \longrightarrow \frac{du}{\pi} = d\Theta$ $at \Theta = -\frac{1}{2}$ <u>Π</u> ₩ <u>=</u> $at \Theta = \frac{1}{2}$ $\mathbf{\omega} = \frac{\Pi}{2}$ Π/2 CoS(u)<u>du</u> _π/2 Π/2 J____CoS(u) du

2. (a) $\int_{-1}^{4} (5-2x)^8 dx$; u = 5-2x $du = 2dx \rightarrow -\frac{du}{2} = dx$ at X = |w = 5 - 2(-1) = 7าริปน 2 ⁷ w du <u>|</u>____

(b)
$$\int_{-\pi/3}^{2\pi/3} \frac{\sin x}{\sqrt{2 + \cos x}} dx; \ u = 2 + \cos x$$

du=0_ SinXdX

at $X = \frac{2\pi}{3}$ $W = 2 + \cos\left(\frac{2\pi}{3}\right) = 2 + \left(-\frac{1}{2}\right) = \frac{3}{2}$

at $X = -\frac{\pi}{3}$, $w = 2 + \cos(-\frac{\pi}{3}) = 2 + \frac{1}{2} = \frac{5}{2}$

$\int_{\frac{3}{2}}^{\frac{5}{2}} \frac{1}{\sqrt{u}} du$
3/2

(c)
$$\int_{0}^{\pi/4} \tan^{2} x \sec^{2} x \, dx; \ u = \tan x$$

 $du = \operatorname{Sec}^{2} \times d \times$
 $at \times = 0 \quad \underline{\qquad} \quad u = \tan v = 0$
 $at \times = \frac{\pi}{4} \quad \underline{\qquad} \quad u = \tan v \left(\frac{\pi}{4}\right) = 1$
 $\int_{0}^{1} u^{2} \, du$

3–12 Evaluate the definite integral two ways: first by a *u*-substitution in the definite integral and then by a *u*-substitution in the corresponding indefinite integral. \blacksquare

3. $\int_{0}^{1} (2x+1)^3 dx$ $W = 2X_{+}$ dw = 2dXdu _ dx $at X_{=0} , w_{=} 2_{,0+} |_{=}$ at X_l w = 2, 1 + 1 = 3ng gr ເພ 3 second method: n dr

 $=\frac{1}{8}(\omega)^{4}$ $=\frac{1}{8}((2X_{+})^{4})^{1}$ $=\frac{1}{8}(2.1+$ 4])____ $(2.0+1)^{4})$ $=\frac{8}{1}((3)^{-}(1)^{+})$ <u>- | (</u>8| = 0 _\)

4. $\int_{1}^{2} (4x-2)^3 dx$ $w = 4X_2$ $dw = 4dX \longrightarrow \frac{dw}{4} = dX$ at X = 2 = 0 $\frac{1}{4}$ f u du $\frac{1}{4} \cdot \left(\frac{u}{4}\right)^{6}$ $= \frac{1}{1} \left(\frac{4}{\omega} \right)_{2}^{6}$ $\begin{pmatrix} 4 & 4 \\ 6 & 2 \end{pmatrix}$ 296_161=80 =<u>1</u>(1296_16)=8 16 _second method: u du $=\frac{1}{4}\cdot\left(\frac{u}{4}\right)^2$ $(\omega^{\dagger})^{\prime}$

 $=\frac{1}{16}(4\times2^{4})^{2}$ (4.2_2) (4.1_2) =<u>|</u>|6 $(|296_16| = 80$

5. $\int_0^1 (2x-1)^3 dx$ _____ $W = 2X_{-}$ $du = 2dX \longrightarrow \frac{du}{2} = dX$ $at X = [_, w = 2,] = [$ $\frac{1}{2}\int_{-1}^{1}\omega du$ $=\frac{1}{2}\cdot\left(\frac{\omega}{4}\right)^{1}$ $=\frac{1}{8}(\omega^{4})^{1}_{1}$ $=\frac{1}{8}(1^{+}(-1)^{+})$ =<u>1</u>(1_1)=0 _second method: [u du 4

 $\left((2 \times 1)^{\dagger} (2 \times 1)^{\dagger}\right)^{\dagger}$ $=\frac{1}{8}$ 6 $(2.1 - 1)^{4} (2.0 - 1)^{4}$ 8 - 0 1 8

6. $\int_{1}^{2} (4-3x)^8 dx$ w=4-3X $dw = -3 dX - \frac{dw}{2} = dX$ $at X_{=} | _, w_{=} 4_{-3.} | =$ at X = 2 = w = 4 = 3.2 = 2 $\frac{1}{3}\int_{1}^{2}u^{2}du = \frac{1}{3}\int_{-2}^{1}u^{2}du$ $\frac{1}{2} \cdot \left(\frac{u^2}{9}\right)_2$ $=\frac{1}{27}(\omega^{2})^{1}_{-2}$ $=\frac{1}{27}(1^{9}-(-2))$ $=\frac{1}{27}(1_{-512}) = 9$ second method: u du 13

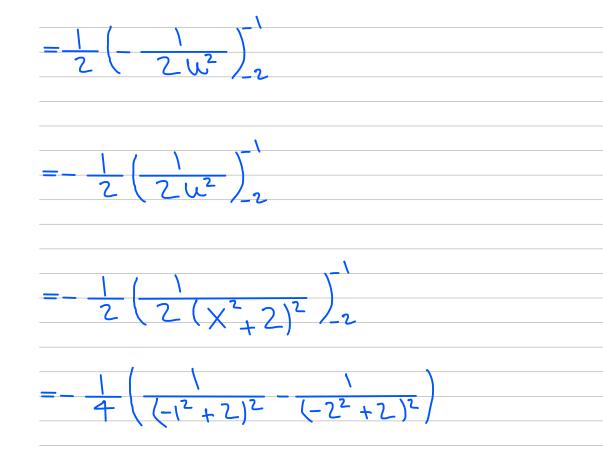
 $=-\frac{1}{27}(\omega^{2})^{2}$ 4_3X)' <u>]</u> (4_3.2)[°] (4_3.1)[°] (-2^{2}) 1 2-9 2

9. $\int_0^{\pi/2} 4\sin(x/2) \, dx$ w = X/2 $du = \frac{1}{2} dX \longrightarrow 2 du = dX$ at X = 0 ____ w = 0/2 = 0 $at X = \frac{\pi}{2} \quad w = \frac{\pi}{2} = \frac{\pi}{4}$ π/4 8 J_ Sin(u) du $= 8(-\cos(u))^{\pi/4}$ $= 8 \left(-Cos(\frac{\pi}{4}) - (-Cos(o)) \right)$ $= 8\left(-\frac{\sqrt{2}}{2}+1\right)$ =-4/2+8

10. $\int_{0}^{\pi/6} 2\cos 3x \, dx$ w = 3 X $du = 3 dX \longrightarrow \frac{du}{2} = dX$ at X = 0 u = 0at $X = \frac{\pi}{\zeta} - \frac{\omega}{\omega} = \frac{3\pi}{\zeta}$ $\frac{2}{2}\int_{\Omega}Cos(u) du$ 31/6 $=\frac{2}{3}(\sin u)_{o}$ $=\frac{2}{3}\left(\operatorname{Sin}\left(\frac{3\pi}{6}\right)-\operatorname{Sin}\left(0\right)\right)$ $=\frac{2}{3}\left(\operatorname{Sin}\left(\frac{\pi}{2}\right)-0\right)$ $=\frac{2}{3}(1)=\frac{2}{3}$ second method: $\frac{2}{3}\int_{0}^{1}Cos(u) du$ $\frac{2}{3}$ (Sin(u)) T/6

Sin(3X) $=\frac{2}{3}$ $=\frac{2}{3}\left(\frac{\sin\left(\frac{3\pi}{6}\right)}{5}-\frac{\sin\left(0\right)}{5}\right)$ $=\frac{2}{3}\left(\operatorname{Sin}\left(\frac{\pi}{2}\right)\right)$ 0 $\frac{2}{3}$ 2 3

11. $\int_{-2}^{-1} \frac{x}{(x^2+2)^3} dx$ $w = X^2 + 2$ $du = 2\chi dX \longrightarrow \frac{du}{2} = \chi dX$ at X = 2, w = 2 + 2 = 6at X = 1 = 0 $\frac{1}{2}\int_{\zeta}^{3}\frac{1}{u^{3}}du$ $= -\frac{1}{2} \int_{\zeta}^{3} \frac{1}{\omega^{3}} \int_{\zeta} \frac{1}{\omega^$ $= -\frac{1}{2} \left(-\frac{1}{2u^2} \right)_{\mathcal{L}}^3$ $\frac{1}{2}\left(\frac{1}{2w^2}\right)^3_{\mathcal{L}}$ $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ $\frac{1}{2} \cdot \frac{1}{74} = \frac{1}{48}$ _Second method: $\frac{1}{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \int u$



36

13–16 Evaluate the definite integral by expressing it in terms of u and evaluating the resulting integral using a formula from geometry.

13.
$$\int_{-5/3}^{5/3} \sqrt{25 - 9x^{2}} dx, u = 3x$$

$$w = 3 \times du = 3 dx \longrightarrow \frac{3}{3} = dx$$
at $X = -\frac{5}{3} \longrightarrow w = 3, -\frac{5}{3} = -5$
at $X = \frac{5}{3} \longrightarrow w = 3, \frac{5}{3} = 5$

$$\frac{1}{3} \int_{-5}^{5} \sqrt{25 - u^{2}} \xrightarrow{\sqrt{2}} (\sqrt{25 - u^{2}})^{2}$$

$$y = \sqrt{25 - u^{2}} \longrightarrow y^{2} (\sqrt{25 - u^{2}})^{2}$$

$$y^{2} = 25 - u^{2} \longrightarrow y^{2} + u^{2} = 2.5$$

$$R = \text{area of CirCle}$$

$$= \frac{1}{2} \pi r^{2} = \frac{1}{3} (\frac{1}{2} \pi r^{2}) \xrightarrow{-5} 5 \times x$$

$$= 25 \pi r^{2}$$

14. $\int_{0}^{2} x\sqrt{16-x^4} \, dx; \ u=x^2$ $W = X^2$ $du = 2X dX \longrightarrow \frac{du}{2} = X dX$ at X = 0 $w = 0^2 = 0$ at X = 2 , $w = 2^{2} = 4$ $\int_{0}^{4} \sqrt{16 - u^{2}} \frac{du}{2} = \frac{1}{2} \int_{0}^{4} \sqrt{16 - u^{2}} du$ $Y = \sqrt{16 - u^2}$ $Y_{+}^{2}u_{-}^{2}=16$ A_area of CirCle $=\frac{1}{4}\pi r^{2} = \frac{1}{2}\left(\frac{1}{4}\pi r^{2}\right)$ $-\left(\frac{1}{4}\pi(4)^{2}\right) = 2\pi$ 1

21–34 Evaluate the integrals by any method. **21.** $\int_{1}^{5} \frac{dx}{\sqrt{2x-1}}$ w = 2X $\frac{du}{du} = dX$ du = 2dX= 1.2Vu $\frac{1}{2}\left(\frac{1}{\sqrt{1}}\right)$ -14 V2X_1 $\sqrt{2(5)} - \sqrt{2(1)}$ 9 3 1 _ 7 _

22. $\int_{1}^{2} \sqrt{5x-1} \, dx$ $w = 5X_1$ du = 5dx - 3du = dx<u>L</u>JVu du 1/2 $-\frac{1}{5} \cdot \frac{1/2}{1/2}$ $=\frac{2}{5} \cdot u^{1/2}$ $= \frac{2}{5} \left(\left(5 \times -1 \right)^{1/2} \right)_{1}^{1/2}$ $V_{2}(5(1)_{1})^{V_{2}}$ $=\frac{2}{5}((5(2)))$ $4^{V_2}) = \frac{38}{15}$ $=\frac{2}{5}(9^{1/2})$

 $23. \ \int_{-1}^{1} \frac{x^2 \, dx}{\sqrt{x^3 + 9}}$ $W = X^3 + 9$ $du = 3x^2 dx - \frac{du}{3} = x^2 dx$ 1 du $\frac{u'^2}{1/2} = \frac{2}{3} u^{1/2}$ <u>۱</u>3 (X^3+9) $=\frac{2}{3}$ $\binom{1/2}{2} (-1^3 + 9)$ ٧_٦ 3+9 2 3 2110-412

24. $\int_{\pi/2}^{\pi} 6\sin x (\cos x + 1)^5 dx$ 6 JSinx Cosx+1) dx u = CaS(x+1)du =_ Sinxdx __ du = Sinxdx 6 Ju Ju $= -6 \frac{\omega}{r}$ =_u = (Cos(x+1)) $\left(\left(CoS(\pi+1)\right)^{c}\left(CoS(\frac{\pi}{2}+1)^{c}\right)\right)$ -1

25.
$$\int_{1}^{3} \frac{x+2}{\sqrt{x^{2}+4x+7}} dx$$

$$w = x^{2}+4x+7$$

$$dw = 2x+4 dx , \frac{dw}{2} = x+2 dx$$

$$at x = 1 , w = 1^{2}+4(1)+7 = 12$$

$$at x = 3 , w = 3^{2}+4(3)+7 = 28$$

$$\int_{12}^{28} \frac{dw}{\sqrt{w}} \frac{dw}{2} = \frac{1}{2} \int_{12}^{28} \frac{w^{1/2}}{w} dw$$

$$= \frac{1}{2} \left(\frac{w^{1/2}}{1/2}\right)_{12}^{28} = \frac{1}{2} + 2\left(\frac{w^{1/2}}{1/2}\right)_{12}^{28}$$

$$= (w^{1/2})_{12}^{28}$$

$$= (\sqrt{28} - \sqrt{12})$$

$$= 2\sqrt{7} - 2\sqrt{3}$$

28. $\int_{0}^{\pi/4} \sqrt{\tan x} \sec^2 x \, dx$ u_tanX du_Sec X dx at X = 0 _____ w = tan(0) = 0 $at X = T/4 _ w = tan(T/4) = 1$ $\int_0^1 \sqrt{u} \, du = \int_0^1 \frac{1}{(u)} \frac{1}{2u}$ $= \left(\frac{\frac{3}{2}}{3/2}\right)^{1} = \frac{2}{3} \left(\frac{3}{2}\right)^{1}_{0}$ $= \frac{2}{3} \left(\frac{1}{3} \right)^{3/2} \frac{3}{2} \left(0 \right)^{3/2}$ 2

33. $\int_0^1 \frac{y^2 dy}{\sqrt{4-3y}}$ w = 4 - 3Y $du = -3dY \longrightarrow -\frac{du}{3} = dY$ $w = 4_{3} - 3 - \frac{w - 4}{3}$ at Y = 0 ..., w = 4 - 3(0) = 4at Y = 1 = ... = 4 = 3(1) = 1 $\frac{1}{3}\int_{1}^{1}\frac{\left(-\frac{u-4}{3}\right)^{2}}{\sqrt{u}}du$ $\frac{(u-4)^{2}}{3\int_{-\infty}^{\infty} \sqrt{u}} du = -\frac{1}{3}\int_{-\infty}^{1} \frac{(u-4)^{2}}{9\sqrt{u}} du$ $= -\frac{1}{27} \int_{4}^{1} \frac{(u-4)^{2}}{(u)^{1/2}} du = -\frac{1}{27} \int_{4}^{1} \frac{u^{2}-8u+16}{(u)^{1/2}} du$ $\frac{4}{16} \frac{3}{2} - 8 \frac{1}{2} \frac{1}{2}$ $\frac{5/2}{U} - 8 \frac{3/2}{3/2} - \frac{16 \frac{1}{2}}{1/2} + \frac{5}{2}$

 $\frac{2}{5} \frac{5/2}{4} - 8 \cdot \frac{2}{3} \frac{3/2}{4} - 16 \cdot 2 \frac{1}{4} \frac{3}{2}$ $\frac{2}{5}\frac{5/2}{4} - \frac{16}{3}\frac{3/2}{4} - \frac{3/2}{3} - \frac{3/2}{3} + \frac{3}{2}\frac{3}{4}$ $\frac{1}{27}$ $=\frac{1}{27}\left(\frac{2}{5}(4)^{5/2}-\frac{16}{3}(4)^{3/2}-32(4)^{1/2}\right)$ 512 <u>|6</u>(|)³¹² <u>32(</u>|)¹¹² <u>3</u> $\left|\frac{2}{5}(1)\right|$ <u>64 128</u> 5 3 554 64 $\frac{1408}{15} - \left(-\frac{554}{15}\right)$ 2-

37. (a) Find
$$\int_{0}^{1} f(3x + 1) dx$$
 if $\int_{0}^{1} f(x) dx = 5$.
(b) Find $\int_{-2}^{0} f(x^{2}) dx$ if $\int_{0}^{1} f(x) dx = 1$.
(c) Find $\int_{-2}^{0} f(x^{2}) dx$ if $\int_{0}^{1} f(x) dx = 1$.
(c) Find $\int_{-2}^{0} f(x^{2}) dx$ if $\int_{0}^{1} f(x) dx = 1$.
(c) Find $\int_{-2}^{0} f(x^{2}) dx$ if $\int_{0}^{1} f(x) dx = 1$.
(c) Find $\int_{-2}^{0} f(x^{2}) dx$ if $\int_{0}^{1} f(x) dx = 1$.
(c) Find $\int_{-2}^{0} f(x^{2}) dx$ if $\int_{0}^{1} f(x) dx = 1$.
(c) Find $\int_{-2}^{0} f(x^{2}) dx$ if $\int_{0}^{1} f(x) dx = 1$.
(c) Find $\int_{-2}^{0} f(x) dx$ if $\int_{0}^{1} f(x) dx$ if $\int_{0}^{1} f(x) dx = 1$.
(c) Find $\int_{-2}^{0} f(x) dx$ if $\int_{0}^{1} f(x) dx = 1$.
(c) Find $\int_{-2}^{0} f(x) dx$ if $\int_{0}^{1} f(x) dx = \frac{1}{3} \int_{0}^{0} f(x) dx$ if $\int_{0}^{1} f(x) dx$ if $\int_{0}^{1} f(x) dx = \frac{1}{3} \int_{0}^{0} f(x) dx$ if $\int_{0}^{1} f(x) dx = \frac{1}{3} \int_{0}^{0} f(x) dx$ if $\int_{0}^{1} f(x) dx = \frac{1}{3} \int_{0}^{0} f(x) dx$ if $\int_{0}^{1} f(x) dx = \frac{1}{3} \int_{0}^{1} f(x) dx$ if

C)u=2X $du = 2X dX \longrightarrow \frac{du}{2} = X dX$ $7^{2} - 4$ at X = 2____ W __ at X = 0 $u = 0^2 = 0$ $\int_{4}^{\circ} f(u) du = -\frac{1}{2} \int_{4}^{4} f(u) du$ _(| <u>|</u> 2 2